1.椭圆x2/9+y2/4=1上任意一点横坐标缩短1/3倍,纵坐标缩短1/2倍,求伸缩变换后曲线方程。解:设椭圆上任意点p(x,y)经过变换后对应点为p‘(x’,y‘) - x‘=1/3x - y‘=1/2y 得 - x=3x‘ - y=2y‘ 因为x2/9+y2/4=1 所以代入上式 x‘2+y’2=1 Last modification:January 1, 2023 © Allow specification reprint Support Appreciate the author AliPayWeChat Like 0 如果觉得我的文章对你有用,请随意赞赏
Comment here is closed